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1 Introduction

This paper describes the dynamical part of a global, hydrostatic grid point model developed

from models described in Mesinger et al. (1988) and Wyman (1996). The model described

here solves the same set of dynamical equations but has a modified vertical and horizontal

grid. The vertical grid is a hybrid sigma-pressure coordinate system, sigma coordinate

surfaces in the lower model levels may gradually transform to pressure coordinate surfaces

in the upper model levels. The horizontal grid has been switched to the Arakawa B-grid

(Arakawa and Lamb 1977). This has several advantages over the previously used E-grid

configuration, especially in the global domain, where the convergence of diagonal fluxes

near the pole of the E-grid has been eliminated in the B-grid. An additional benefit is

the simplification of model output, a single field on the B-grid is essentially on its own

rectangular A-grid. The basic time differencing schemes used has not changed from either of

the preceding models. The step-mountain (eta) coordinate is no longer a supported option,

although much of the code remains in place, very little effort has been made to ensure that

it works correctly.

This paper will describe the finite difference schemes used to solve the dynamical equa-

tions on the global B-grid. This will include descriptions of the time differencing, horizontal

mixing, lateral boundary conditions, and polar filtering.

2 The horizontal grid

The prognostic variables on the semi-staggered Arakawa B-grid lie on two overlapping grids.

The momentum components (u and v) are located together on what will be called the

momentum or velocity grid. Surface pressure (ps), temperature (T ), and an arbitrary number

of tracers (R) are located together on what will be called the mass or temperature grid. The

momentum and mass grids are rectangular in shape, with equal spacing in longitude (λ)



along the x-axis and latitude (ϕ) along the y-axis. The grids are diagonally shifted from

each other, such that, the center of a momentum grid box is located at the corner where

four mass grid boxes intersect.

Auxiliary grids can be defined for computing additional quantities. The zonal mass flux

grid (or U grid) has grid boxes centered on the east and west faces of a mass grid box. The

meridional mass flux grid (or V grid) has grid boxes centered on the north and south faces

of a mass grid box.

Horizontal indexing increases from west to east, and from south to north. Figure 1 shows

the indexing scheme used by the various grids. Indexing is set up so that a velocity grid box

with the same i,j is centered at the northeast corner of a mass (temperature) grid box, while

the grid box Ui,j is centered on the east face, and the grid box Vi,j is centered on the north

face.

If the grid spacing along the x- and y-axis is given as ∆λ and ∆ϕ, respectively, then

using spherical geometry the grid distance in meters can be defined as

∆x = a ∆λ
δϕ sinϕ

∆ϕ
(2.1a)

∆y = a ∆ϕ (2.1b)

where a is the radius of the earth. Then the area of temperature and velocity grid boxes is

computed as

At = ∆xt ∆y (2.2a)

Av = ∆xv ∆y (2.2b)

The global grid is aligned so that velocity grid boxes are centered on the equator and at

the poles. The temperature grid will have grid box edges line up with the equator and poles,

therefore the global temperature grid must have an even number of latitude grid boxes.

3 The vertical coordinate

The model uses a sigma/pressure hybrid vertical coordinate. Near the Earth’s surface model

levels are defined only by the terrain-following sigma coordinate. In upper model layers, well

above the topography, the coordinate surfaces may coincide with constant pressure surfaces.

In between there is a slow transition from sigma to pressure.
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Figure 1: The indexing and relative locations of the four sub-grids. The surface pressure,

temperature, and tracers are located on the temperature grid (T points), momentum is

located on the velocity grid (v points), and the zonal and meridional mass fluxes are located

at U and V points. The heavy line denotes the boundaries of a temperaure grid box.
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The model variables u, v, T , and R are grid box averages, essentially located at full

model levels. Vertical velocity is diagnosed at the interface between model layers. Vertical

indexing increases from the top of the atmosphere towards the surface.

3.1 Pressure at half levels

The B-grid model uses a vertical differencing scheme similar to that described by Simmons

and Burridge (1981). The vertical coordinate is defined by a reference profile of pressure P

and sigma/eta values η at the half-model levels. The pressure at half levels can be computed

from the surface pressure ps as

pk+ 1
2

= Pk+ 1
2

+ ηk+ 1
2
psl (3.1)

For the sigma coordinate case, psl = ps, and for the eta coordinate case, psl = ps/ηs. Here ηs

is the sigma/eta value at the Earth’s surface. For the special case of a pure sigma coordinate,

P = 0 (at all levels). When defining the vertical profile of P and η, the following conditions

must be met

η 1
2

= 0 (3.2a)

ηN+ 1
2

= 1 (3.2b)

Psurface = 0 (3.2c)

If there are N model levels, then pressure is computed at half levels from p 1
2

to pN+ 1
2
. Again,

for the sigma coordinate case, pN+ 1
2

= ps.

The sigma coordinate with a non-zero pressure at the top of the model is a special case

of the hybrid coordinate. The reference profile of pressures can be computed from η-values

and ptop 6= 0.

Pk+ 1
2

= ptop (1− ηk+ 1
2
) (3.3)

3.2 Pressure thickness

The mass weight for individual model layers is computed from the pressure at half model

levels as

∆pk = δηp = pk+ 1
2
− pk− 1

2
(3.4)
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3.3 Pressure at full levels

The pressure at full model levels is computed as in Simmons and Burridge (Equation 3.18)

in a manner that is consistent with the pressure gradient term (5.11).

ln pk =
pk+ 1

2
ln pk+ 1

2
− pk− 1

2
ln pk− 1

2

∆pk
− 1 (3.5)

4 The equations

The fundamental quantities predicted by the model are the momentum components, surface

pressure, temperature, and tracers. The prognostic equations written for the vertical coor-

dinate eta (η) follow that of Wyman (1996), Mesinger et al. (1988), and Mesinger (1984).

The equations for momentum, temperature, and tracers can be written respectively as

d~v

dt
+ f~k × ~v +∇Φ +

RdT
∗

p
∇p+ ~F = 0 (4.1a)

dT

dt
+

1

cp

RdT
∗

p

[∫ η

0

(∇ · ∂p
∂η

~v)dη − (~v · ∇p)
]

+ FT = 0 (4.1b)

dr

dt
+ Fr = 0 (4.1c)

The continuity equation is given as

∂

∂η
(
∂p

∂t
) +∇ · ~v ∂p

∂η
+

∂

∂η
(η̇
∂p

∂η
) = 0. (4.2)

The velocity of the vertical coordinate surface η̇ ≡ dη
dt

, is computed by integrating (4.2)

η̇
∂p

∂η
= −∂p

∂t
−
∫ η

0

(∇ · ∂p
∂η

~v)dη (4.3)

where the surface pressure tendency is

∂ps
∂t

= −
∫ ηs

0

(∇ · ∂p
∂η

~v)dη. (4.4)

Geopotential height Φ in (4.1a), is determined by integrating the hydrostatic equation

∂Φ

∂η
= −RdT

∗

p

∂p

∂η
(4.5)

where Rd is the gas constant for dry air, T ∗ is the virtual temperature (defined later) and p

is the pressure.

The Coriolis and curvature terms in (4.1a) are defined as f = 2Ω sinφ + (u/a) tanφ,

where a and Ω are the radius and angular speed of rotation of the earth, respectively. ~F , FT ,
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and Fr represent the mixing terms for momentum, temperature and tracers, respectively.

This paper will only discuss the lateral mixing terms, the vertical terms are considered part

of the physical parameterizations.

5 Finite differencing

5.1 The adjustment terms

5.1.1 Mass divergence

The mass divergence is computed at model levels and on the temperature grid as

Dk =
1

At
(δλU + δϕV)k (5.1)

The horizontal mass fluxes in (5.1) are computed at the east and north faces of a temperature

grid box as

Uk = uk ∆y ∆pvk
ϕ

(5.2a)

Vk = vk ∆xv ∆pvk
λ

(5.2b)

The pressure thickness at velocity points ∆pvk is computed by taking an area weighted average

of pressure thickness from the four surrounding overlapping mass grid boxes.

∆pvk =

4
∑

1

av∆pk

Av
(5.3)

Here av is the area of overlap of a mass grid box with a velocity grid box, where
4
∑

1

av = Av.

5.1.2 Surface pressure tendency

The surface pressure tendency (4.4) is computed by integrating the mass divergence (5.1)

from the top of the atmosphere to the surface.

∂ps
∂t

= −
N
∑

k=1

Dk (5.4)

6



5.1.3 Vertical velocity

The vertical mass flux is computed at half levels on the mass grid as

Wk+ 1
2

= (η̇ps)k+ 1
2

= −

(

ηk+ 1
2

∂ps
∂t

+ ηs

N
∑

n=1

Dn

)

. (5.5)

where the vertical velocity, η̇ = dη
dt

.

5.1.4 Hydrostatic equation

Geopotential height at half and full levels is computed by integrating the hydrostatic equation

(4.5) up from the surface.

Φk− 1
2

= Φk+ 1
2

+Rd T
∗
k (wbk + wak) (5.6a)

Φk = Φk+ 1
2

+Rd T
∗
k w

b
k (5.6b)

The lower boundary condition is the surface height Φs.

ΦN+ 1
2

= Φs (5.7)

If the model has moisture, the virtual temperature is computed as

T ∗k = Tk (1 +
Rv −Rd

Rd

Qk) (5.8)

where Rd is the gas constant for dry air, Rv is the gas constant for water vapor, and Qk is

specific humidity (a tracer field). For a dry model, T ∗k = Tk.

The weights in (5.6) are computed from the pressure at half and full model levels.

wak = ln pk − ln pk− 1
2

(5.9a)

wbk = ln pk+ 1
2
− ln pk (5.9b)

Here, wbk is equivalent to αk in Simmons and Burridge (1981). Using these weights, the finite

difference form of the hydrostatic equation (5.6) reduces to the usual form δΦ = RdT
∗δ ln p.

5.1.5 Pressure gradient term

The term ∇p/p in (4.1a) and (4.1b) is computed in a manner consistent with Simmons and

Burridge (1981). The zonal and meridional components are computed on model levels and
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at mass flux points (U, V points) as

(Cλ)k =
1

∆pk
λ

(wak
λ
δλpk− 1

2
+ wbk

λ
δλpk+ 1

2
) (5.10a)

(Cϕ)k =
1

∆pk
ϕ (wak

ϕ
δϕpk− 1

2
+ wbk

ϕ
δϕpk+ 1

2
) (5.10b)

The average meridional pressure thickness is computed using an area-weighted average sim-

ilar to (5.3).

∆pk
ϕ

=
(2av∆pk)north + (2av∆pk)south

Av

5.1.6 Pressure gradient force

The pressure gradient force, the third and fourth term on the LHS of Equation (4.1a), can

be computed in one of two ways: using the Simmons and Burridge (1981) scheme or the

Lin (1997) finite-volume integration method. With both schemes the implementation for

the B-grid is similar. First, pressure gradient components are computed on the east/west

and north/south faces of the velocity grid boxes. (This is essentially computing the pressure

gradient on the C-grid.) Then, these components are averaged to the middle of a B-grid

velocity grid box.

Simmons and Burridge scheme

For the Simmons and Burridge scheme the geopotential height evaluated at full model levels

(5.6b) and the pressure gradient terms (5.10) are used. The pressure gradient components

at the faces of a velocity grid box are computed as

(Pλ)k = (δλΦ)k +Rd T ∗k
λ

(Cλ)k (5.11a)

(Pϕ)k = (δϕΦ)k +Rd T ∗k
ϕ

(Cϕ)k (5.11b)

These components are then averaged to momentum grid boxes to get the pressure gradient

force components on the B-grid.

(Gλ)k = − 1

∆xv
(Pλ

ϕ
)k (5.12a)

(Gϕ)k = − 1

∆y
(Pϕ

λ
)k (5.12b)
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Finite volume scheme

The scheme computes a contour integral of the pressure forces acting on the finte volume.

The pressure gradient force for the x-z plane as given by Lin (Equation 10) is

du

dt
=

∫

c
Φ d ln p

∫

c
ln p dx

(5.13)

The B-grid implementation evaluates the numerator and denominator at U and V points

and then separately averages the integrals to the middle of a velocity grid box. Only the

pressure and geopotential height at half model levels (5.6a) are needed. The contour integrals

in the numerator and denomenator of (5.13) can be computed as

(Numλ)k = δλ(Φ
η
δηln p)− δη(Φ

λ
δλln p) (5.14a)

(Denomλ)k = −δηln p
λ
∆x (5.14b)

and for the meridional component as

(Numϕ)k = δϕ(Φ
η
δηln p)− δη(Φ

ϕ
δϕln p) (5.15a)

(Denomϕ)k = −δηln p
ϕ
∆y (5.15b)

The numerator and denomenator are then separately averaged to momentum grid boxes to

get the pressure gradient force components for the B-grid.

(Gλ)k =
(Numλ

ϕ
)k

(Denomλ
ϕ
)k

(5.16a)

(Gϕ)k =
(Numϕ

λ
)k

(Denomϕ
λ
)k

(5.16b)

It should be noted that the Lin scheme does not use the pressure gradient terms (5.10),

which are used for cancellation with the horizontal omega-alpha term (5.17). Therefore,

conservation of energy between the pressure gradient and omega-alpha term is not guaranteed

with the Lin finite volume pressure gradient.

5.1.7 Omega-alpha term

The omega-alpha term is represented by the second term on the LHS of Equation (4.1b).

There are two parts to this term (in the square brackets), the horizontal gradient of pressure

and vertical integral of divergence. The horizontal part of the omega-alpha term averages

the horizontal mass fluxes (5.2) and ∇p/p term (5.10) to temperature points. The vertical

9



part evaluates the integral of divergence at model levels using the pressure weights (5.9).

This may be expressed in finite difference form as

(
ω

p
)k =

1

∆pk

[

1

At
(UCλ

λ
+ VCϕ

ϕ
)k + (wak

k−1
∑

n=1

Dn + wbk

k
∑

n=1

Dn)

]

(5.17)

The temperature tendency is then computed as

(

∂Tk
∂t

)

ωα

=
Rd T

∗
k

cp
(
ω

p
)k (5.18)

5.1.8 Divergence damping

When taking long atmospheric time steps, the physics tendencies may produce high am-

plitude, small scale noise, or so called grid point storms. Divergence damping (Sadourney

1975) may be used to reduce or eliminate these small scale disturbances. The damping is

applied to the momentum components by taking the gradient of the divergence. This type

of scheme provides only second order damping and is quite dissipative. The model described

here has extended the scheme to a fourth-order scheme that more selectively damps smaller

scales. The scheme as applied to the momentum tendencies can be expressed as

(

∂u

∂t

)

ddamp

= K∗
1

∆t

∆x

∆p
δλD∗

ϕ
(5.19a)

(

∂v

∂t

)

ddamp

= K∗
1

∆t

∆y

∆p
δϕD∗

λ
(5.19b)

When the scheme is second order, D∗ is the divergence and K∗ =
Kddamp

8
, where Kddamp is a

user specified coefficient. For the fourth order scheme,

D∗ = δλδλD + δϕδϕD (5.20)

where D is the divergence and K∗ = −Kddamp
64

.

The user specified coefficient has been normalized by the maximum allowable value and

should be in the range, 0 ≤ Kddamp ≤ 1. In the current implementation, Kddamp is set to

1 at one latitude row adjacent to the pole when the divergence damping term is non-zero.

This helps dissipate numerical noise related to the polar boundary.
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5.2 The advection terms

5.2.1 Advection

The advective tendencies are computed separately for the horizontal plane and the vertical

axis. The default spatial differencing is centered (either second or fourth-order), and there

is an option for vertical tendencies to be computed by a finite volume scheme using either a

piecewise linear scheme (Lin et al. 1994) or piecewise parabolic method (PPM) (Colella and

Woodward 1984). The finite volume advection schemes are described in another report.

The advective tendencies are computed in flux form then adjusted using the pressure

tendency. Using temperature as an example, this may be represented as
(

∂Tk
∂t

)

adv

=
1

∆pk

[

∂∆pkTk
∂t

− Tk
∂∆pk
∂t

]

(5.21)

The first term in brackets on the RHS represents the advective tendency in flux form. If the

second term contains the pressure tendency over the advective time step, then the global

average mass-weighted temperature will be conserved. The same procedure is used for prog-

nostic tracers and momentum. For non-prognostic tracers, those that are not advected, the

tendency in flux form is zero but the pressure adjustment term must still be computed to

account for changes in surface pressure. The details of the time differencing will be explained

later.

The horizontal and vertical tendencies for temperature (shown) or tracers in flux form is

computed as
(

∂∆pkTk
∂t

)

horiz

= − 1

At

[

δλ(ÛT
λ) + δϕ(V ̂Tϕ)

]

k
(5.22)

(

∂∆pkTk
∂t

)

vert

= −
[

(W ̂T η)k+ 1
2
− (W ̂T η)k− 1

2

]

(5.23)

where

̂T λ = α2T
λ

+ α4T
3λ

(5.24a)

̂Tϕ = α2T
ϕ

+ α4T
3ϕ

(5.24b)

̂T η = α2T
η

+ α4T
3η

(5.24c)

The operators T
λ
, T

ϕ
, and T

η
are simple averages of temperatures at adjacent grid point.

The operators T
3λ

, T
3ϕ

, and T
3η

are averages of temperature over three grid intervals. The

coefficients α2 and α4 control the second-order and fourth-order schemes. For the second-

order scheme, α2 = 1 and α4 = 0. For the fourth-order scheme, α2 = 7/6 and α4 = −1/6.
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It should be noted that a more accurate vertical average value for ̂T η can be determined us-

ing the thickness of the model layers, however, this type of weighted-average will not conserve

energy.

The advective tendencies for momentum in flux form are computed in a manner identical

to temperature (except the mass fluxes are averaged to the appropriate grid points).
(

∂∆pvkvk
∂t

)

horiz

= − 1

At

[

δλ(U
λϕ
v̂λ) + δϕ(V

λϕ
v̂ϕ)
]

k
(5.25)

(

∂∆pvkvk
∂t

)

vert

= −
[

(W
λϕ
v̂η)k+ 1

2
− (W

λϕ
v̂η)k− 1

2

]

(5.26)

Here, U
λϕ

and V
λϕ

are simple four-point averages of the horizontal mass fluxes (5.2) and

W
λϕ

is a four-point area-weighted average of the vertical mass flux (5.5).

5.2.2 Horizontal mixing

Horizontal mixing is computed using a second-order smoothing operator applied along co-

ordinate surfaces. The result from the second-order operator may be reapplied to achieve

higher order mixing. The second-order operator for temperature (or prognostic tracers) is

computed as

M 2(T ) =
1

At∆pk
[δλ(KλδλT ) + δϕ(KϕδϕT )] (5.27)

The zonal and meridional coefficients are

Kλ = KT ∆λ At
λ

∆pk
λ

(5.28a)

Kϕ = KT ∆ϕ At
ϕ

∆pk
ϕ

(5.28b)

where At
λ
, At

ϕ
, ∆pk

λ
, and ∆pk

ϕ
are simple two-point averages along the appropriate axis.

KT is a user specified non-dimensional mixing coefficient for temperature, 0 ≤ KT ≤ 1, and

∆λ and ∆ϕ are constants that describe the strength of the mixing with latitude. For the

mixing to remain stable the condition, KT∆λ ≤ 1/8 and KT∆ϕ ≤ 1/8, must be met. A

unique KT may be specified for all variables.

Fourth-order mixing is computed by reapplying the the result from the second-order operator

(for sixth-order mixing the fourth-order operator is reapplied). The fourth-order mixing for

temperature can be expressed as
(

∂T

∂t

)

hdiff

=
1

∆t
M 4(T ) ≈ − 1

∆t

[

M 2(M 2(T ))
]

(5.29)
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The mixing of momentum is handled analogous to temperature.

The second-order operator for momentum is computed as

M 2(v) =
1

Av∆pvk
[δλ(Kλδλv) + δϕ(Kϕδϕv)] (5.30)

with zonal and meridional coefficients of

Kλ = Kv ∆v
λ Av

λ
∆pvk

λ
(5.31a)

Kϕ = Kv ∆v
ϕ Av

ϕ
∆pvk

ϕ
(5.31b)

where Av
λ
, Av

ϕ
, ∆pvk

λ
, and ∆pvk

λ
are defined the same as the similar terms in (5.28). Kv

is a user specified non-dimensional mixing coefficient for momentum and the condition:

Kv∆
v
λ ≤ 1/8 and Kv∆

v
ϕ ≤ 1/8, must be met.

The schemes that specify ∆λ, ∆ϕ, ∆v
λ, and ∆v

ϕ as functions of latitude are defined in the

Appendix.

5.2.3 Horizontal mixing slope correction

Horizontal mixing along terrian following coordinate surfaces may introduce large errors in

regions with steep topographic slopes. These errors may be especially noticeable for temper-

ature and some tracers fields (such as moisture) where the spurious mixing up sloping model

surfaces may lead to large maxima (in quantities such as precipitation) in high mountainous

regions.

To adjust for this effect a correction may be added to the zonal and meridional fluxes of

horizontal mixing.

For temperature this correction is computed as

sλ = − γTk
λ
δλpk (5.32a)

sϕ = − γTk
ϕ
δϕpk (5.32b)

where

γTk =
Tk+1 − Tk−1

pk+1 − pk−1

(5.33)

At the top and bottom levels one-sided differences are used.

The slope corrections sλ and sϕ are added into the zonal and meridional fluxes in the

temperature/tracer mixing equation (5.27).

M 2(T ) =
1

At∆pk
[δλ(Kλ(δλT +Ks sλ)) + δϕ(Kϕ(δϕT +Ks sϕ))] (5.34)
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where 0 ≤ Ks ≤ 1, is a user specified coefficient for the slope correction. Ks may be set as a

global background value and as separate values for each of the three lowest model levels. It

is recommended that Ks � 1 at the lowest model level due to the one-side estimate of γTk in

a typically thin sigma layer near the surface. If fourth-order (or higher) mixing is used the

slope correction is only applied to the first pass of the second-order operator.

5.2.4 Filling negative tracer values

Negative tracer values can be generated by several different terms. The advection of trac-

ers using centered differencing schemes may be the largest contributor to negative tracer.

Also the use of polar filtering with the centered difference advection scheme is a very large

contributor in high latitudes. Another less obvious source of negative tracer is higher-order

horizontal mixing. The second-order smoothing operator does not create negative tracer,

but the fourth-order or higher schemes can create negative tracer when there are very sharp

gradients.

With semi-Lagrangian finite-volume advection schemes the source of negative tracer is

limited to truncation errors. There is no need for polar filtering and with the implicit diffusion

of the schemes, there is typically no need for horizontal mixing.

The negative tracer filling schemes used in this model borrow from the nearest grid points

in the vertical and horizontal in a way that conserves the global tracer mass. The schemes

are applied to each prognostic tracer separately.

Vertical borrowing

Vertical borrowing is performed after advection. Equal parts are borrowed from adjacent

grid points below and above.

First, compute the deficit (Dk) and surplus (Sk) at all levels

Dk = min(∆pkRk, 0)

Sk = max(∆pkRk, 0)

Then, starting at the top of the model and proceeding down through all model levels compute

an adjustment where there is a deficit (Dk < 0).

The fraction of the available surplus from adjacent levels is

Fk = max

(

Sk−1 + Sk+1

−Dk

, 1

)
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Compute the contribution from the level above Ru and the level below Rb

Ru = Sk−1/Fk

Rb = Sk+1/Fk

then compute the adjustment to the tracer at level k and adjacent levels

∆tRk =
1

∆pk
(Ru +Rb) (5.35)

∆tRk−1 = − 1

∆pk−1

Ru

∆tRk+1 = − 1

∆pk+1

Rb

also modifying the surplus at the level below

Sk+1 = Sk+1 −Rb (5.36)

The tracer tendency for vertical borrowing is computed from (5.35) as

(

∂Rk

∂t

)

vfill

=
1

∆t
∆tRk (5.37)

Horizontal borrowing

A modified smoothing scheme is used that is similar to horizontal mixing. A second-order

operator, essentially a five-point Shapiro filter, is repetitively applied to borrow from neigh-

boring grid points.

The second-order operator at level k is computed as

δtRk =
1

At∆pk
[δλ(KλδλRk) + δϕ(KϕδϕRk)] (5.38)

The zonal and meridional coefficients are

Kλ =
1

8
At

λ
∆pk

λ

Kϕ =
1

8
At

ϕ
∆pk

ϕ

where the terms ( )
λ

and ( )
ϕ

are simple two-point averages along the appropriate axis. The

horizontal borrowing scheme sets coefficients Kλ and Kϕ to zero where borrowing should not

occur. In other words, Kλ will be non-zero when the adjacent tracers values (in δλR) have

opposite signs.
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If successive second order passes are applied, the non-zero flux coefficients from previous

passes are not reset to zero. This allows for better filling of large negative regions. The

tracer tendency for horizontal borrowing is computed from (5.38) as

(

∂Rk

∂t

)

hfill

=
1

∆t
δtRk (5.39)

5.2.5 Sponge layer

A one-layer sponge may be applied at the top level of the model. The sponge performs strong

eddy damping of the prognostic fields. The damping is done using a 5-point Shapiro filter,

similar to that used for horizontal mixing and tracer hole filling. For temperature, tracers,

and zonal wind the zonal mean is removed before applying the filter. For the meridional

wind, the entire field is damped.

The following formula is used

(

∂ϑ

∂t

)

sponge

=
Ksp

At∆pk∆t
[δλ(Kλδλϑ) + δϕ(Kϕδϕϑ)] (5.40)

where ϑ = T ∗, R∗, u∗, or v; note that ( )∗ represents that the zonal mean has been removed.

Ksp is a user-specified damping coefficient, where 0 ≤ Ksp ≤ 1. The zonal and meridional

coefficients are

Kλ =
1

8
At

λ
∆pk

λ

Kϕ =
1

8
At

ϕ
∆pk

ϕ

where ( )
λ

and ( )
ϕ

are again simple two-point averages along the appropriate axis.

In practice, it is usually sufficient to apply the sponge to only the momentum components.

6 Time differencing

6.1 Adjustment terms

The model is integrated using a two time-level scheme. Gravity waves use the forward-

backward scheme (Mesinger 1977), in which the surface pressure is integrated with a forward

step and the Coriolis and pressure gradient terms with a backward step.
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The forward step for surface pressure and temperature can be represented as

pτ+1
s = pτs + ∆t(

∂ps
∂t

)τ (6.1)

T τ+1 = T τ + ∆t
(Rd T

∗
k )τ

cp
(
ω

p
)τ (6.2)

where all terms on the RHS are computed using time level τ .

The backward step for momentum can be represented as

uτ+1 = uτ + ∆tCλ −∆tGτ+1
λ

vτ+1 = vτ + ∆tCϕ −∆tGτ+1
λ

The pressure gradient G is computed using the mass fields at time level τ + 1. The Coriolis

terms Cλ and Cϕ are solved using a modified trapezoidal implicit scheme.

Cλ = f τ
[

(1− α)vτ + αvτ+1
]

Cϕ = − f τ
[

(1− α)uτ + αuτ+1
]

f = 2Ω sinϕ+ (uτ/a) tanϕ

The scheme is explicit when α = 0, implicit when α = 1, and equivalent to the trapezoidal

scheme when α = 1
2

(currently the default).

6.2 Advection terms

Since explicit time differencing for advection is unstable for the two-time level scheme, a

modified Euler-backward scheme is used instead (Matsuno 1966). Futhermore, additive split

time differencing is used so that a longer advective time step can be taken (Gadd 1978).

The modified Euler-backward scheme is a two-step scheme, using the temperature/tracer

advection equation (5.21) this can be represented as:

Step 1

T+
k = T τk + ∆t

∂Tk
∂t

(6.3)

∂T ∗k
∂t g

=
1

∆pτ+1
k

[

∂∆pkT
τ+
k

∂t
− T τak

∆pτ+1
k −∆pτak

∆t

]

(6.4)

Step 2

T ∗k = T τk + ∆t

[

∂Tk
∂t

+ w
∂T ∗k
∂t g

]

(6.5)
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(
∂Tk
∂t

)adv =
1

∆pτ+1
k

[

∂∆pkT
∗
k

∂t
− T τak

∆pτ+1
k −∆pτak

∆t

]

(6.6)

In the first step, an initial temperature T+
k is computed from the current temperature ten-

dency and then used to compute a first guess of the advective tendency. In the second step,

an estimate of the future temperature T ∗k is computed using the advective tendency from

step 1. The final part of step 2 computes the final advective tendency using the estimate of

the future temperature.

In step 2, the weight factor must be, 0 ≤ w ≤ 1. If w = 0 the scheme reduces to the standard

Euler-forward scheme, which is unstable, and if w = 1 the scheme is the full Euler-backward

scheme. When w < 1, the modified scheme has less damping than the full Euler-backward

scheme (personal communication, F. Mesinger; also see Kurihara and Tripoli 1976).

The time-splitting of adjustment and advection time step is accomplished by summing

the mass fluxes (U,V,W) over adjustment time steps and by saving the values for ∆pk,

u, v, and T from the previous advection time step (τa). Because tracers are only updated

on the advection time step there is no need to save the previous value. Note that with this

scheme the advection time step must be a multiple of the adjustment time step.

The tracer filling, horizontal mixing, and the top level sponge are all computed using

values at time level τ + 1.

7 Lateral Boundaries

The global compute domain is defined as the set of grid points where the model’s prognostic

variables are computed. Additional rows of grid points called halo rows (or points) extend

beyond all four lateral boundaries of the global compute domain to make it easier to calculate

the horizontal finite differencing.

Data in halo rows are assigned values based on data in the compute domain. Halo rows

that are beyond the east and west boundaries of the global compute domain are assigned

values using cyclic continuity. While halo rows to the north and south must be assigned

values that allow cross-polar flow and retain the conservation properties of the numerical

schemes (i.e., the conservation of mass and total energy).

The row of momentum grid boxes at the pole is considered a halo row. The momentum

components at pole row p are set as

ui,p = vi,p = 0 (7.1)
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Data in halo rows that are beyond the pole row (outside the global compute domain) are

assigned values based on data in the compute domain.

ui,p+n = ui,p−n (7.2a)

vi,p+n = −vi,p−n (7.2b)

Ti,p+n = Ti,p−n (7.2c)

Ri,p+n = Ri,p−n (7.2d)

8 Polar filtering

A polar filtering scheme is used at high latitudes to damp the shortest resolvable waves so that

a longer time step can be taken. Filtering is applied to the mass divergence, horizontal omega-

alpha tendency, horizontal advective tendency of temperature and prognostic tracers, and

the momentum components. The momentum components are transformed to stereographic

coordinates before they are filtered to minimize distortion near the poles. The filtering

scheme conserves mass and tracer mass, but does not conserve energy (Takacs and Balgovind

1983).

The fields are filtered by transforming a full latitude circle of data to Fourier components

using a fast Fourier transform (FFT). The Fourier components are damped (i.e., multi-

plied) by a given function of wave number and latitude, and then transformed back to grid

point space using the inverse FFT. The polar filter function used for damping the Fourier

components is related to wave number k, and latitude row j, and is defined as

Sj,k =

(

cosϕj
cosϕref

1

sinX

)m

(8.1)

where 0 ≤ Sj,k ≤ 1, X = k∆λ/2, and cosϕref is the reference latitude poleward of which

filtering is performed. Typically filtering is done poleward of 60 degrees latitude, but this

is an adjustable model parameter. The strength of the filter increases with higher wave

numbers and latitude. The factor m is an optional parameter for increasing the overall

strength of the filter when additional stability is needed, the default is m = 1.

9 Energy conservation

The numerical schemes and finite differencing used in this model have been designed to

conserve mass, kinetic and potential energy, and total energy. Exceptions to this include the
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time differencing and the diffusive terms: polar filtering, horizontal mixing, and the sponge.

(The finite volume pressure gradient is also not guaranteed to conserve energy.) For the

most part the non-energy conservation is small, and for relatively short model integrations

is not important. For longer climate simulations a correction may be computed to account

for this lack of exact energy conservation.

The conservation of total energy can be expressed as the summation over all grid points

and model levels of the time rate of change of kinetic energy (KE) and potential energy

(PE).
∑ ∂KE∆p

∂t
∆x∆y +

∑ ∂PE∆p

∂t
∆x∆y = 0 (9.1)

The residual from (9.1) is used to compute a correction term to the temperature. The

correction is uniform at all grid points and model levels.

∂T

∂t
=
−
[

1
cp

∑ ∂KE∆p
∂t

∆x∆y +
∑ ∂PE∆p

∂t
∆x∆y

]

∑

∆x∆y∆p
(9.2)

The kinetic energy contribution is computed as

∂KE∆p

∂t
=

[

(uτ +
1

2
∆t
∂u

∂t
)
∂u

∂t
+ (vτ +

1

2
∆t
∂v

∂t
)
∂v

∂t

]

∆pτ+1 +
1

2
(u2 + v2)τ

∂∆p

∂t
(9.3)

and the potential energy contribution as

∂PE∆p

∂t
=

1

cp

[

∂T

∂t
∆pτ+1 + T τ

∂∆p

∂t

]

(9.4)
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A Notation

The operator δsA represents the simple difference between adjacent grid points along the

s-axis. Similarly, the operator A
s

represents the simple average between adjacent grid points

along the s-axis. Using the stencil in Figure 1, the following differencing can be derived.

For A at T (or V) points the operators evaluated along the x-axis at U (or v) points are

defined

(δλA)i,j = Ai+1,j − Ai,j
(A

λ
)i,j = Ai+1,j + Ai,j

and evaluated along the y-axis at V (or v) points are defined

(δϕA)i,j = Ai,j+1 − Ai,j
(A

ϕ
)i,j = Ai,j+1 + Ai,j

For A at v (or U) points the operators evaluated along the x-axis at V (or T ) points are

defined

(δλA)i,j = Ai,j − Ai−1,j

(A
λ
)i,j = Ai,j + Ai−1,j

and evaluated along the y-axis at U (or T ) points are defined

(δϕA)i,j = Ai,j − Ai,j−1

(A
ϕ
)i,j = Ai,j + Ai,j−1

The operators for vertical differencing are defined

(δηA)i,j,k = Ai,j,k+1 − Ai,j,k
(A

η
)i,j,k = Ai,j,k+1 + Ai,j,k

B Horizontal mixing coefficients

The latitudinal stength of the horizontal mixing is determined by ∆λ and ∆ϕ in (5.28),

and by ∆v
λ and ∆v

ϕ in (5.31). The variation of mixing with latitude can be controlled by
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five possible schemes. Scheme 1 has globally uniform mixing, schemes 2-5 provide increased

mixing towards the poles.

Scheme 1: Uniform mixing

∆λ = ∆ϕ =
1

8

Scheme 2: Increased mixing poleward of latitude ϕref .

∆λ = ∆ϕ =
1

8
MAX

(

1,
∆x2

eq + ∆y2

∆x2

cos2 ϕref
+ ∆y2

)

Scheme 3: Larger increase in mixing poleward of latitude ϕref .

∆λ = ∆ϕ =
1

8
MAX

(

1,
∆x2

ref

∆x2

)

Scheme 4: Increased mixing poleward of latitude ϕref , but only along x-axis.

∆λ =
1

8
MAX

(

1,
∆x2

eq + ∆y2

∆x2

cos2 ϕref
+ ∆y2

)

∆ϕ =
1

8

Scheme 5: Larger increase in mixing poleward of latitude ϕref , but only along x-axis.

∆λ =
1

8
MAX

(

1,
∆x2

ref

∆x2

)

∆ϕ =
1

8

In schemes 2-5, ϕref is the latitude at which the poleward increase in mixing begins, equa-

torward of this latitude there is uniform mixing (equivalent to scheme 1). ∆x and ∆y are

defined by (2.1a) and (2.1b), ∆xeq is defined at the equator, and ∆xref is defined at the

reference latitude (ϕref ).
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Mesinger, F., Z. I. Janjić, S. Ničković, D. Gavrilov and D. G. Deaven, 1988: The step-

mountain coordinate: Model description and performance for cases of Alpine lee cy-

clogenesis and for a case of an Appalachian redevelopment. Mon. Wea. Rev., 116,

1493–1518.

Simmons, A. J. and D. M. Burridge, 1981: An energy and angular-momentum conserving

vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev.,

109, 758–766.

Takacs, L. L. and R. C. Balgovind, 1983: High-latitude filtering in global grid-point models.

Mon. Wea. Rev., 111, 2005–2015.

23



Wyman, B. L., 1996: A step-mountain coordinate general circulation model: Description

and validation of medium-range forecasts. Mon. Wea. Rev., 124, 102–121.

24


	Introduction
	The horizontal grid
	The vertical coordinate
	Pressure at half levels
	Pressure thickness
	Pressure at full levels

	The equations
	Finite differencing
	The adjustment terms
	Mass divergence
	Surface pressure tendency
	Vertical velocity
	Hydrostatic equation
	Pressure gradient term
	Pressure gradient force
	Omega-alpha term
	Divergence damping

	The advection terms
	Advection
	Horizontal mixing
	Horizontal mixing slope correction
	Filling negative tracer values
	Sponge layer


	Time differencing
	Adjustment terms
	Advection terms

	Lateral Boundaries
	Polar filtering
	Energy conservation
	Notation
	Horizontal mixing coefficients

